
International Journal of Scientific & Engineering Research Volume 9, Issue 1, January-2018 1177
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

An Effective Technique for Detection and
Prevention of SQLIA by utilizing CHECKSUM

Based String Matching
Mohammad Abu Kausar, Mohammad Nasar

Abstract— with the growth of the Internet, web applications, for example, online shopping, online banking and email, have turned out to be
indispensable to numerous people’s every day lives. Web applications have carried with them new classes of PC security vulnerabilities,
for example, SQL Injection. It is a class of information approval based vulnerabilities However, the vast majority of the web application
exists have some weakness as there are some reckless people known as hacker that able to corrupt the data. Some of well-known web
application vulnerabilities are SQL Injection, Buffer Overflow, Cross Site Scripting etc. Typical uses of SQL injection release private data
from a database, by-pass confirmation rationale, or add unapproved records to a database. This security keeps the unapproved access to
your database and furthermore it keeps your information from being changed or erased by clients without the appropriate permissions.
Malicious Text Detector, Restriction Validation, Query length authentication and Text based Key Generator are the four kinds of filtration
strategy used to identify and keep the SQL Infusion Attacks from getting to the database.

Index Terms— SQL Injection Attack, Web applications, Web security, Data validation, Web Application Vulnerabilities, CHECKSUM Code,
Malicious Text Detector.

—————————— ——————————

1 INTRODUCTION
QL injection is an assault procedure that adventures a se-
curity vulnerability happening in the database layer of an
application. Hikers utilize infusions to get unapproved

access to the sensitive information, structure, and DBMS. It is a
standout amongst the most well-known web application vul-
nerabilities.

A Database is the core of many web-applications and is uti-
lized to store data required by the application, for example,
bank account number, password, credit card information, cli-
ent orders and many more. Thus, databases have turned out to
be appealing and extremely lucrative focuses for hackers to
hack into. SQL Injections happen when a software developer
or user input data that is specifically put into a SQL Statement
and doesn't legitimately approve and sift through dangerous
characters. This can enable an aggressor to change SQL state-
ment that go to the database as parameters and empower to
take information from your database, as well as adjust and
erase it. SQL injection attack happen when a web application
does not approve values got from a web page, cookie, input,
and so on., before passing them to SQL query that will be exe-
cuted on a database server. This will enable hackers to control
the data. The below table 1 summarizes SQL injection exam-
ples which shows the different types of threats.

TABLE 1
DIFFERENT TYPES OF SQL INJECTION EXAMPLE

Types of Threat SQL Injection Examples
Elevation of privilege Fetch and use credentials

for administrator
 Run shell commands

Information disclosure get saved debit/credit
card information

 Gain insight into internal
design of app

Spoofing get and use another user’s
information

 change Author value for
messages

Repudiation remove transaction de-
tails

 remove database logs
Tampering modify different data in

the database
 change product infor-

mation
Denial of service erase sqlservr.exe process

 execute resource-
intensive SQL queries

2 RELATED WORK
SQL injection attack is a typical risk to web applications that
uses poor input validation to implement attack on database. It
is turning into an intense issue in web applications as hackers
steal sensitive information from database this makes very im-
portant issue for web application as well as other types of ap-
plication available on the web.

S

————————————————
• Author Mohammad Abu Kausar is currently working as Assistant Profes-

sor in Department of Information Systems in University of Nizwa, Oman
E-mail: kausar@unizwa.edu.om

• Co-Author Mohammad Nasar is currently working as Assistant Professor
in Department of Computer Science and Information Technology in
Mazoon College, Oman
E-mail: nasar31786@gmail.com

IJSER

http://www.ijser.org/
mailto:kausar@unizwa.edu.om
mailto:nasar31786@gmail.com

International Journal of Scientific & Engineering Research Volume 9, Issue 1, January-2018 1178
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Research on SQL injection attacks (SQLIA) can be generally
categorize into two classifications: vulnerability detection ap-
proaches and attack prevention approaches. The past classifi-
cation comprises of methods that identify helpless areas in a
Web application that may prompt SQL infusion assaults. With
a specific end goal to avoid SQL injection attacks, a software
developer repeatedly subjects all contributions to enter ap-
proval and sifting schedules that distinguishes endeavors to
infuse SQL orders. The procedures displayed in [1, 2, 3] char-
acterize the major static analysis techniques for vulnerability
identification, where computer code is analyzed to guarantee
that each bit of info is liable to an information approval regis-
ter before being consolidated into a query. While these static
investigation approaches scale well and distinguish vulnera-
bilities, their utilization in tending to the SQL infusion issue is
restricted to just recognizing possibly unvalidated inputs. The
tools do not give any approach to check the accuracy of the
input validation routines, and programs using incomplete
input validation routines may certainly pass these checks and
cause SQL injection attacks. Shin et al.[4] apply SQLUnitGen, a
Statical analysis tool that is used to automate the testing for
recognizing input control vulnerabilities. Shin et al. used
SQLUnitGen tool which author is matched with FindBugs
tool, FindBugs tool is a static investigation tool. The planned
method is revealed to be proficient as regard to the way that
false positive was totally absent in the experiments. XI-Rong
Wu et al. [5] projected a new process named k-centers (KC) to
identify SQL injection attacks (SQLIAs). The total number and
the centers of the clusters in KC are fixed based on unseen
SQL query in the adversarial situation; in this technique the
types of SQL injection attacks are changed time to time, to ad-
just various types of attacks. The experimental output demon-
strates that the proposed technique has a delightful outcome
on the SQL infusion assaults (SQLIAs) recognition in the an-
tagonistic condition. Ramya Dharam et al. [6] proposed a
structure which able to be utilized to deal with SQL Injection
Attacks in light of repetition utilizing post-arrangement check-
ing system. The structure utilizes two pre-arrangement testing
systems i.e. data flow and testing basis path techniques to rec-
ognize legitimate execution ways of the product. Runtime
screens are then created and incorporated to screen the execu-
tion of the product for perceived execution ways with the end
goal that their infringement will recognize and avoid redun-
dancy based SQL Injection Attacks. Shin [7] anticipated a
technique to construct test input data to trace SQL injection
vulnerabilities by creating a white-box from both input flow
analysis and input validation analysis. Ali et al. [8] used the
hash value concept to get better user verification tool. Author
used the user id and password hash values SQLIPA (SQL In-
jection Protector for Authentication) model was produced
keeping in mind the end goal to test the system. The user id
and password hash values are formed and calculated at
runtime for the first run through the particular client account
is made. Valeur [9] planned an interruption discovery system
using a machine learning method. The SQL statement pro-
duced in a web application were learned to produce the pa-
rameters of the detection model. Then, executing SQL state-
ment was evaluated to the developed model in order to con-

firm for discrepancy. If the proposed model will not efficiently
train, many negative and positive results can occur. Park [10]
used the SQL statement of a web application and evaluated it
with the SQL statement generated at runtime dynamically
using the pair wise sequence alignment of amino acid formu-
late method to detect SQL injection attacks. This method hav-
ing lot of benefits because it can identify SQL injection attacks
without rewriting the web application. However, the web ap-
plication will be profiled when it will be changed. Su and
Wassermann [11] planned a resolution of static analysis of an
SQL query using parse tree validation, for filtering user input
and for generation the input validation code author used that
static structure.

3 PROPOSED SELF-PROTECTIVE TOOL IN STATIC
LEVEL AUTHENTICATION

Proposed method is the mixture of static analysis with dynam-
ic validation. In the static analysis phase, the prevention tech-
nique signifies in three level stages Malicious Text Detector,
Field Restriction Authentication and Static Query Length Au-
thentication. In dynamic validation phase, the user input in-
formation is validated with all these stages and results the
client contribution as safe or risky.

Fig. 1. Sample code for Malicious Text Detector

3.1 Malicious Text Detector
1. Statically form a model for staying away from Meta

characters (figure 1)
2. Detect the vulnerability character which is added

with the user’s data and stop the malicious attacker
from getting to the web application.

Test 1: select * from registration where user_id =’kausar’ - -
‘and user_password=123456

userid_valid1 = object1.stripQuotes(UCase(‘kausar’- -‘))
userid_valid2 = object1.killChars(‘kausar’- -‘)
password_valid1 = object1.stripQuotes(0)
password_valid2 = object1.killChars(0)
correct_userid = ‘kausar’
correct_password = 0

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 1, January-2018 1179
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

length_username = Len(‘kausar’) length_password =
Len(0)

If length_username = 16 and length_password = 6 Then

[Do action]

End If

Test 1: express a malignant query, the user input information
is pattern matched with malicious text detector and identifies
the wild card characters (in this test wild card character is --);
system throw an exception as a SQL injection attack.

Field Limitation Validation
The Login stage is set with restriction as username is permit-
ted only the sixteen characters and Password is permitted only
six characters as shown in (Fig. 2).

Fig. 2. Constraint validation Example code

4 PROPOSED SQL INJECTION ATTACK - PROTECTOR
MECHANISM

In view of high level security the current system comprises of
three purification stages with static and runtime level. In the
first place level stage is Malicious Text Detector, Second level
stage is Restriction Identifier, Third level stage is Static Query

Analysis and the Fourth level Stage is the CHECKSUM Key
Generator based on Text.
4.1 Basic Principle in Run time Observing
At the time of application running, the user’s input data are
analysed against the relating filtration methods used to check
for their legitimacy. The dynamically produced user’s input
are not fulfilled with all the three level of purification method
then they are identified as malicious else authentic user and
permitted to get to the web application.

4.2 Text based Key Generator

1. Converting User input into CHECKSUM code
2. Searching the availability of converted CHECKSUM

in table and returns valid UserName and Password,
3. Four parameters are kept in database that is

UserName, password, CHECKSUM UserName and
CHECKSUM Password (Table 2)

TABLE 2: Sensitive Data conversion into CHECKSUM code in
database table

UserName Password CHECKSUM

UserName

CHECKSUM

Password

Kausar 123456 151292031 148828186

Nasar 324563 9652351 150864167

Unizwa 123987 179490254 148829515

Oman 213904 610939 149812680

User Name :
Password :

Login

Malicious Text Detector

Constraint Identifier

Key Generator based on Text
Convert user

input to
CHECKSUM

format

Checking the
availability of

converted
CHECKSUM in

database and
return valid User
Name & Pass-

Database

Compare User
input to return

valid User Name
& Password

Get access to
System Valid

Fig. 3. Proposed Architecture for CHECKSUM based String Matching system.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 1, January-2018 1180
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

This current method is used to authenticate the user input
with static and dynamic analysis to identify and avoid SQL
Injection. Figure 4 demonstrates that the client input infor-
mation enters in the Login stage from the User Interface, Ap-
plication Server behave as a middleware to filter the SQL In-
jection.

The first level stage: When the client input enters inside the
login phase, the malicious text detector is utilized to identify
the vulnerability character which is attached with the user’s
information and throw an exception that the client as a malig-
nant assault and keep from getting to the application.

In the Second level stage: The login stage is set with re-
striction for example, User Name is permitted just the sixteen
characters and the Password is permitted just six characters.
So the customer input is coordinated with this confinement if
this level satisfies the information will be changed over as SQL
Query with database and begin to match with third level.

In the third level stage: The length of the number of possible
queries is kept in the array layout in statically created tech-
nique. Each and every character is analysed and number of
static Query is included and put away in a static model and
after that the input data is also calculated with the existed stat-
ic value and matched if it matches it moves to the CHECK-
SUM key generator or else it will be disallowed as SQL Injec-
tion attack.

5 COMPARISON WITH EXISTING SYSTEMS
Existing framework, for example, In AMNESIA [12] static

model form SQL-query models: For every hotspot, construct a
model that speaks to all the conceivable SQL inquiries that
might be created at that hotspot. A SQL-query model is a non-
deterministic Finite - state automaton in which the change
labels consist of SQL keywords and operators, delimiters, and
place holders for string values. Author [13] demonstrates that
static investigation is handled by utilizing SQL Graph demon-
stration using FSM. The existing system [13], [14] is fully Que-
ry based authentication but the proposed system is data based
authentication in Static and dynamic authentication to secure
the web application. The execution time of proposed system
shows that the result is better performance than existing sys-
tem and in addition the computational cost is additionally
least contrasted with this proposed system.

5.1 Result and Discussion

Table 3 gives comparison of prevention and detection
overhead for the proposed system with existing system [13]
[14]. The proposed CHECKSUM based string matching is de-
veloped by utilizing two types of databases, SQL Server and
Oracle. The prevention overhead and detection overhead is
calculated by using the formula (1 and 2). The Figure 4 and
Figure 5 provides comparison chart for prevention and detec-
tion overhead for the current system with query based system
[13] [14]. The following formula is used for calculating preven-
tion and detection overhead.
Overhead Detection = Detection Time / Round-trip Time (1)

Where Detection Time is time required for identifying ma-
licious characters in the client input and Round-trip Time is

the reaction time for finishing a single query of the proposed
system.
Overhead Prevention = Prevention Time / Round-trip Time
 (2)
Where Prevention Time is the time postpone expected to keep
the malicious. The Round-trip Time is the round-trip reaction
time for finishing the single query implementation.

Database Technique

Overhead

Detection in

ms per query

Overhead

Prevention

in ms per

query

Sql Server

CHECKSUM

Based String

Matching

10 17

 Transparent

Defense

Mechanism

[13]

18 24

SQLPrevent

Techique [14]
16 22

Oracle

CHECKSUM

Based String

Matching

14 17

 Transparent

Defense

Mechanism

[13]

20 31

 SQLPrevent

Techique [14]
17 26

TABLE 3: COMPARISON OF DETECTION AND PREVENTION OVER-
HEAD FOR CHECKSUM BASED STRING MATCHING SYSTEM WITH

EXISTING SYSTEMS

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 1, January-2018 1181
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

6 CONCLUSION
The proposed system joins static and dynamic analysis. In the
static investigation phase, the prevention method characteriz-
es in three level stages Malicious Text Detector, Field Con-
straint Authentication and Static Query Length Authentica-
tion. The proposed system uses CHECKSUM which generates
small amount of code to store in database. In runtime valida-
tion phase, the client input information is approved with eve-
ry one of these stages and results the client input as safe or
risky. This proposed system implements .NET based web ap-
plications; proposed system is able to prevent almost all type
of SQL Injection Attacks. This system could effectively distin-
guish all assaults as SQL Injection Attacks, while enabling eve-
ry single query to be performed.

REFERENCES
[1] Y. Shin, L. Williams and T. Xie, "SQLUnitGen: Test Case Generation for SQL

Injection Detection," North Carolina
[2] Xi-Rong Wu; Chan, P.P.K., "SQL injection attacks detection in adversarial

environments by k-centers," Machine Learning and Cybernetics (ICMLC),
2012 International Conference on , vol.1, no., pp.406,410, 5-17 July 2012.

[3] Dharam, R.; Shiva, S.G., "Runtime monitors for tautology based SQL injection
attacks," Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), 2012
International Conference on , vol., no., pp.253,258, 26-28 June 2012.

[4] Preventing SQL Injections in Online Applications: Study, Recommendations
and Java Solution Prototype Based on the SQL DOM .Etienne Janot, Pavol
Zavarsky Concordia University College of Alberta, Department of Infor-
mation Systems Security

[5] Xie, Y., and Aiken, A. Static detection of security vulnerabilities in scripting
languages. In USENIX Security Symposium (2006).

[6] Mcclure, R. A. and Kr¨Uger, I.H. 2005. SQL DOM: Compile time checking of
dynamic SQL statements.In Proceedings of the 27th International Conference
on Software Engineering (ICSE’05).ACM, New York, 88–96.

[7] Y. Shin, Improving the identification of actual input manipulation vulnerabil-
ities, in: 14th ACM SIGSOFT Symposium on Foundations of Software Engi-
neering ACM, 2006.

Fig. 4. Comparison Chart for Detection and Prevention Overhead in SQL Server for CHECKSUM based String Matching
System with Current System

Fig. 5. Comparison Chart for Detection and Prevention Overhead in Oracle for CHECKSUM based String Matching System
with Current System

IJSER

http://www.ijser.org/
http://www.ijser.org/�

International Journal of Scientific & Engineering Research Volume 9, Issue 1, January-2018 1182
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

[8] Shaukat Ali, Azhar Rauf, Huma Javed “SQLIPA:An authentication mecha-
nism Against SQL Injection”

[9] F. Valeur, D. Mutz, G. Vigna, A learning-based approach to the detection of
SQL attacks, in: Proceedings of the Conference on Detection of Intrusions and
Malware and Vulnerability Assessment, 2005, pp 123–140.

[10] J. Park, B. Noh, SQL injection attack detection: profiling of web application
parameter using the sequence pairwise alignment, in: Information Security
Applications, in: LNCS, vol. 4298, 2007, pp. 74–82.

[11] Z.Su and G. Wassermann, “The Essence of Command Injection Attacks in
Web Application,” in the 33rd Annual Symposium on Principles of Pro-
gramming languages, 2006, pages 372-382.

[12] W.G.J. Halfond, A. Orso, “AMNESIA: analysis and monitoring for Neutral-
izing SQL-injection attacks,” 20th IEEE/ACM International Conference on
Automated Software Engineering, Long Beach, CA, USA, 2005, pp. 174–
183.

[13] Muthuprasanna,KeWei, Suraj Kothari N, “Eliminating SQL Injection At-
tacks - A TransparentDefenceMechanism”, SQL Injection Attacks Prof. Jim
Whitehead CMPS 183. Spring , 2006.

[14] Sun, S.T., and Beznosov, K. “SQLPrevent: Effective dynamic detection and
prevention of SQL injection attacks”, (Technical Report No. LERSSE-TR-
2009-032). Laboratory for Education and Research in Secure Systems Engi-
neering, 2009, http://lersse-dl.ece.ubc.ca.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related work
	3 Proposed Self-protective tool in Static Level Authentication
	3.1 Malicious Text Detector

	4 Proposed SQL Injection Attack - Protector Mechanism
	4.1 Basic Principle in Run time Observing
	4.2 Text based Key Generator

	5 Comparison with Existing Systems
	5.1 Result and Discussion

	6 Conclusion
	References

